
1

Compilers Are Interpreters
We use the words compiler and interpreter to hide (abstract) reality.

To understand what "is going on underneath", we need to examine how CPUs
are constructed and what apps are.

CPU Hardware
CPUs (Central Processing Unit - a designation invented in the 1950's which is

no longer true)1 consist of a blob of asynchronous electronic semi-conductors
made up of various oxides ("rust" is an oxide).

We abstract the blob of electronics via a low-level API.

The API is implemented in hardware, and exposes the hardware using ideas
of:

• a set of registers (global, shared)
• memory (global, shared).

All of the software apps that we write today boil down to accesses to this API.

We used to access this API via a bank of switches that stored codes in memory.

Then, we invented assembler apps that could convert text into codes in memory.

Then, we invented compiler apps that could convert text into assembler and,
ultimately, into codes in memory.

Then, we invented HLLs (High Level Languages) that further abstracted the

1 Most apps are decentralized today (2021, internet), hence, the word CPU (Central
Processing Unit) is not an accurate depiction of what is going on.

2

notion of poking codes into memory.

HLLs gave us more checking for common programming errors, like syntax
checking and type checking.

Apps
All software apps (applications) boil down to a set of instructions in machine

code that are interpreted by the underlying hardware.

The instructions are numeric codes (binary) that are poked into memory.

Memory is an array of words (bytes (int8), int16, … int64) indexed by a
numeric index stored in the the PC (Program Counter) register.

The CPU performs a set of actions based on the binary code stored in memory
indexed by the PC register. We use the word interpret for this behaviour.

Interpreters
Sometimes we write large apps that we call interpreters.

These apps usually step through some input data and perform actions based
on the input data.

For example

…
if (data == "hello") { print ("hello"); }
if (data == "goodbye") {print ("goodbye"); }
…

3

Such apps - interpreters - are actually interpreted by the CPU hardware.

Running such apps many times incurs a speed penalty - the interpreter app
needs to re-parse each string each time through and this, then, gets interpreted by
the CPU hardware.

Parsing (understanding, interpreting) strings is an "expensive" operation,
since the interpreter app doesn't know the length of the strings and must walk
the strings from front-to-back each time through.

We could write smarter apps, for example we could compress the strings into
some kind of binary code that could be interpreted by the CPU less expensively.

We use the word compiler to mean apps which do the above kind of
compression.

Compilers
Sometimes we write large apps that we call compilers.

Compilers are pre-processors.

Compilers take specifications and convert them into machine codes.

The specifications are usually in the form of text and follow certain rules the
we call HLLs (High Level Languages).

Some versions of compilers generate machine codes directly, other versions
generate assembly code that is further converted into machine codes (by other
apps).

In the end, however the machine codes are generated, the result is interpreted

4

by the CPU hardware.

Compilers are apps. Apps are interpreted by the CPU hardware.

Example of a Compiler
A ficticious example of compiling follows…

In the interpreter section we saw the action of a ficticious interpreter

…
if (data == "hello") { print ("hello"); }
if (data == "goodbye") {print ("goodbye"); }
…

How would you make this "better"?
• You could make it use less memory.
• You could make it run faster.

Let's look at making it run faster.

We could make the above code run faster by pre-processing it and using binary
codes instead of strings.

For example, maybe we would rewrite the above as:

…
if (data == 0x50) { print ("hello"); }
if (data == 0x75) {print ("goodbye"); }
…

Here, 0x50 and 0x75 are "faster" to interpret because we don't need to walk (re-
walk) the strings ("hello" and "goodbye").

5

What is the hidden gotcha, the hidden cost?
• We have to run an app (once) to pre-process the code (converting the

strings into binary codes), and,
• we have to store the preprocessed result somewhere, and,
• every time we abstract something, we end up throwing information away,

which then restricts our further thinking and ideas.

Yet, in the end, the net result is a speed-up. We pay the cost of pre-processing
once, then we run the result (through the CPU) many times.

We do this preprocessing in a second app. We call this kind of app a compiler.
This kind of app is actually an interpreter that gets interpreted by the CPU, but it
saves us run-time in the end, for running the original app (now compressed).

There are lots of nuances in writing such pre-processors. A field of study has
emerged, called compiler writing.

Language Design
It turns out that we can write better pre-processors if we put restrictions on the
rules for writing the original app.

We call the activity of figuring out the rules, language design.

6

Diagrams

Interpreters

Refactoring Interpreters

7

Compilers and Interpreters

	Compilers Are Interpreters
	CPU Hardware
	Apps
	Interpreters
	Compilers
	Example of a Compiler

	Language Design
	Diagrams
	Interpreters
	Refactoring Interpreters
	Compilers and Interpreters

